If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+4^2=x^2
We move all terms to the left:
7^2+4^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+65=0
a = -1; b = 0; c = +65;
Δ = b2-4ac
Δ = 02-4·(-1)·65
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{65}}{2*-1}=\frac{0-2\sqrt{65}}{-2} =-\frac{2\sqrt{65}}{-2} =-\frac{\sqrt{65}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{65}}{2*-1}=\frac{0+2\sqrt{65}}{-2} =\frac{2\sqrt{65}}{-2} =\frac{\sqrt{65}}{-1} $
| 0.2x-6=6.8 | | 8(x-9)=-4(3x-6) | | 120=-8x | | 51=y | | 3/4(5/9-4x)-2/9=5/9 | | 2+2x=16+4x | | 5x+6x-7x=23+5 | | 3(2x+2)=6x=4=2 | | 12+x/2=2 | | -8(x-3)-10=-3 | | -2+2x=-2+2x | | 12y^2+5y–2=0 | | 12y2+5y–2=0 | | -8m-19=-2(4m-7)-33 | | 1/3x^2-1587=0 | | 12(32/3)+12(5/12k)=12(-11/4) | | 2b+92=128 | | 64-16=16(4x-1) | | 4x-5=50-x | | 4x-2x=6+6 | | 6=-(7-c) | | n+16.56=5.56 | | -7=-5m+4m | | n-5.56=16.56 | | 3-9(x-4)=9x+21 | | 2x+61,2+2x+82,8=360 | | z/2+1=6 | | 4q−3q=19 | | 8-z÷2=5 | | 5x+4(2.5)=12 | | Y=(2x+7)(3x-8) | | x/2+12=4 |